Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how climate and local stressors interact is paramount for predicting future ecosystem structure. The effects of multiple stressors are often examined in small‐scale and short‐term field experiments, limiting understanding of the spatial and temporal generality of the findings. Using a 22‐year observational dataset of plant and grazer abundance in a southeastern US salt marsh, we analyzed how changes in drought and grazer density combined to affect plant biomass. We found: (1) increased drought severity and higher snail density both correlated with lower plant biomass; (2) drought and snail effects interacted additively; and, (3) snail effects had a threshold, with additive top‐down effects only occurring when snails were present at high densities. These results suggest that the emergence of multiple stressor effects can be density dependent, and they validate short‐term experimental evidence that consumers can augment environmental stress. These findings have important implications for predicting future ecosystem structure and managing natural ecosystems.more » « less
-
Abstract BackgroundCombined impacts from anthropogenic pressures and climate change threaten coastal ecosystems and their capacity to protect communities from hazards. One approach towards improving coastal protection is to implement “nature-based solutions” (NBS), which are actions working with nature to benefit nature and humans. Despite recent increases in global implementation of NBS projects for coastal protection, substantial gaps exist in our understanding of NBS performance. To help fill this gap, we systematically mapped the global evidence base on the ecological, physical, economic, and social performance of NBS interventions related to coastal protection. We focused on active NBS interventions, such as restoring or creating habitat, adding structure, or modifying sediment in six shallow biogenic ecosystems: salt marsh, seagrass, kelp forest, mangrove, coral reef, and shellfish reef. MethodsWe identified potentially relevant articles on the performance of NBS for coastal protection using predefined and tested search strategies across two indexing platforms, one bibliographic database, two open discovery citation indexes, one web-based search engine, and a novel literature discovery tool. We also searched 45 organizational websites for literature and solicited literature from 66 subject matter experts. Potentially relevant articles were deduplicated and then screened by title and abstract with assistance from a machine learning algorithm. Following title and abstract screening, we conducted full text screening, extracted relevant metadata into a predefined codebook, and analyzed the evidence base to determine the distribution and abundance of evidence and answer our research questions on NBS performance. ResultsOur search captured > 37,000 articles, of which 252 met our eligibility criteria for relevance to NBS performance for coastal protection and were included in the systematic map. Evidence stemmed from 31 countries and increased from the 1980s through the 2020s. Active NBS interventions for coastal protection were most often implemented in salt marshes (45%), mangrove forests (26%), and shellfish reefs (20%), whereas there were fewer NBS studies in seagrass meadows (4%), coral reefs (4%), or kelp beds (< 1%). Performance evaluations of NBS were typically conducted using observational or experimental methods at local spatial scales and over short temporal scales (< 1 year to 5 years). Evidence clusters existed for several types of NBS interventions, including restoration and addition of structures (e.g., those consisting of artificial, hybrid, or natural materials), yet evidence gaps existed for NBS interventions like alteration of invasive species. Evaluations of NBS performance commonly focused on ecological (e.g., species and population, habitat, community) and physical (e.g., waves, sediment and morphology) outcomes, whereas pronounced evidence gaps existed for economic (e.g., living standards, capital) and social (e.g., basic infrastructure, health) outcomes. ConclusionsThis systematic map highlights evidence clusters and evidence gaps related to the performance of active NBS interventions for coastal protection in shallow, biogenic ecosystems. The synthesized evidence base will help guide future research and management of NBS for coastal protection so that active interventions can be designed, sited, constructed, monitored, and adaptively managed to maximize co-benefits. Promising avenues for future research and management initiatives include implementing broad-scale spatial and temporal monitoring of NBS in multidisciplinary teams to examine not only ecological and physical outcomes but also economic and social outcomes, as well as conducting further synthesis on evidence clusters that may reveal measures of effect for specific NBS interventions. Since NBS can deliver multiple benefits, measuring a diverse suite of response variables, especially those related to ecosystem function, as well as social and economic responses, may help justify and improve societal benefits of NBS. Such an approach can help ensure that NBS can be strategically harnessed and managed to meet coastal protection goals and provide co-benefits for nature and people.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract BackgroundAnthropogenic pressures and climate change threaten the capacity of ecosystems to deliver a variety of services, including protecting coastal communities from hazards like flooding and erosion. Human interventions aim to buffer against or overcome these threats by providing physical protection for existing coastal infrastructure and communities, along with added ecological, social, or economic co-benefits. These interventions are a type of nature-based solution (NBS), broadly defined as actions working with nature to address societal challenges while also providing benefits for human well-being, biodiversity, and resilience. Despite the increasing popularity of NBS for coastal protection, sometimes in lieu of traditional hardened shorelines (e.g., oyster reefs instead of bulkheads), gaps remain in our understanding of whether common NBS interventions for coastal protection perform as intended. To help fill these knowledge gaps, we aim to identify, collate, and map the evidence base surrounding the performance of active NBS interventions related to coastal protection across a suite of ecological, physical, social, and economic outcomes in salt marsh, seagrass, kelp, mangrove, shellfish reef, and coral reef systems. The resulting evidence base will highlight the current knowledge on NBS performance and inform future uses of NBS meant for coastal protection. MethodsSearches for primary literature on performance of NBS for coastal protection in shallow, biogenic ecosystems will be conducted using a predefined list of indexing platforms, bibliographic databases, open discovery citation indexes, and organizational databases and websites, as well as an online search engine and novel literature discovery tool. All searches will be conducted in English and will be restricted to literature published from 1980 to present. Resulting literature will be screened against set inclusion criteria (i.e., population, intervention, outcome, study type) at the level of title and abstract followed by full text. Screening will be facilitated by a web-based active learning tool that incorporates user feedback via machine learning to prioritize articles for review. Metadata will be extracted from articles that meet inclusion criteria and summarized in a narrative report detailing the distribution and abundance of evidence surrounding NBS performance, including evidence clusters, evidence gaps, and the precision and sensitivity of the search strategy.more » « less
-
Bugnot, Ana Barbara (Ed.)Major storms can alter coastal ecosystems in several direct and indirect ways including habitat destruction, stormwater-related water quality degradation, and organism mortality. From 2010–2020, ten tropical cyclones impacted coastal North Carolina, providing an opportunity to explore ecosystem responses across multiple storms. Using monthly trawl and contemporaneous seagrass surveys conducted in Back Sound, NC, we evaluated how cyclones may affect the nursery role of shallow-water biogenic habitats by examining seagrass-associated fish responses within a temperate-subtropical estuary. We employed a general before-after-control-impact approach using trawls conducted prior (before) and subsequent (after) to storm arrival and years either without (control) or with (impact) storms. We examined whether effects were apparent over short (within ~three weeks of impact) and seasonal (May-October) timescales, as well as if the magnitude of storm-related shifts varied as a function of storm intensity. Our findings suggest that the ability of these shallow-water habitats to support juvenile fishes was not dramatically altered by hurricanes. The resilience exhibited by fishes was likely underpinned by the relative persistence of the seagrass habitat, which appeared principally undamaged by storms based upon review of available–albeit limited seagrass surveys. Increasing cyclone intensity, however, was correlated with greater declines in catch and may potentially underlie the emigration and return rate of fish after cyclones. Whether estuarine fishes will continue to be resilient to acute storm impacts despite chronic environmental degradation and predicted increases major tropical cyclone frequency and intensity remains a pressing question.more » « less
-
Abstract Foundation species, such as mangroves, saltmarshes, kelps, seagrasses, and oysters, thrive within suitable environmental envelopes as narrow ribbons along the land–sea margin. Therefore, these habitat‐forming species and resident fauna are sensitive to modified environmental gradients. For oysters, many estuaries impacted by sea‐level rise, channelization, and municipal infrastructure are experiencing saltwater intrusion and water‐quality degradation that may alter reef distributions, functions, and services. To explore decadal‐scale oyster–reef community patterns across a temperate estuary in response to environmental change, we resampled reefs in the Newport River Estuary (NRE) during 2013–2015 that had previously been studied during 1955–1956. We also coalesced historical NRE reef distribution (1880s–2015), salinity (1913–2015), and water‐quality‐driven shellfish closure boundary (1970s–2015) data to document environmental trends that could influence reef ecology and service delivery. Over the last 60–120 years, the entire NRE has shifted toward higher salinities. Consequently, oyster–reef communities have become less distinct across the estuary, manifest by 20%–27% lower species turnover and decreased faunal richness among NRE reefs in the 2010s relative to the 1950s. During the 2010s, NRE oyster–reef communities tended to cluster around a euhaline, intertidal‐reef type more so than during the 1950s. This followed faunal expansions farther up estuary and biological degradation of subtidal reefs as NRE conditions became more marine and favorable for aggressive, reef‐destroying taxa. In addition to these biological shifts, the area of suitable bottom on which subtidal reefs persist (contracting due to up‐estuary intrusion of marine waters) and support human harvest (driven by water quality, eroding from up‐estuary) has decreased by >75% since the natural history of NRE reefs was first explored. This “coastal squeeze” on harvestable subtidal oysters (reduced from a 4.5‐km to a 0.75‐km envelope along the NRE's main axis) will likely have consequences regarding the economic incentives for future oyster conservation, as well as the suite of services delivered by remaining shellfish reefs (e.g., biodiversity maintenance, seafood supply). More broadly, these findings exemplify how “squeeze” may be a pervasive concern for biogenic habitats along terrestrial or marine ecotones during an era of intense global change.more » « less
An official website of the United States government
